A novel computational approach to approximate fuzzy interpolation polynomials
نویسندگان
چکیده
This paper build a structure of fuzzy neural network, which is well sufficient to gain a fuzzy interpolation polynomial of the form [Formula: see text] where [Formula: see text] is crisp number (for [Formula: see text], which interpolates the fuzzy data [Formula: see text]. Thus, a gradient descent algorithm is constructed to train the neural network in such a way that the unknown coefficients of fuzzy polynomial are estimated by the neural network. The numeral experimentations portray that the present interpolation methodology is reliable and efficient.
منابع مشابه
gH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملA novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملInterpolation of the tabular functions with fuzzy input and fuzzy output
In this paper, rst a design is proposed for representing fuzzy polynomials withinput fuzzy and output fuzzy. Then, we sketch a constructive proof for existenceof such polynomial which can be fuzzy interpolation polynomial in a set given ofdiscrete points rather than a fuzzy function. Finally, to illustrate some numericalexamples are solved.
متن کاملAnalysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method
The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کامل